skip to main content


Search for: All records

Creators/Authors contains: "Gu, L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 22, 2025
  2. Abstract

    Accurate partitioning of net ecosystem exchange (NEE) of CO2to gross primary production (GPP) and ecosystem respiration (Reco) is crucial for understanding carbon cycle dynamics under changing climate. However, it remains as a long‐standing problem in global ecology due to lack of independent constraining information for the two offsetting component fluxes. solar‐induced chlorophyll fluorescence (SIF), a mechanistic proxy for photosynthesis, holds great promise to improve NEE partitioning by constraining GPP. We developed a parsimonious SIF‐based approach for NEE partitioning and examined its performance using synthetic simulations and field measurements. This approach outperforms conventional approaches in reproducing simulated GPP andReco, especially under high vapor pressure deficit. For field measurements, it results in lower daytime GPP andRecothan conventional approaches. This study made the first attempt to demonstrate SIF's potential for improving NEE partitioning accuracy and sets the stage for future efforts to examine its robustness and scalability under real‐world environmental conditions.

     
    more » « less
  3. null (Ed.)
  4. Abstract

    Mid‐Missouri experienced up to 2 min 40 s of totality at around solar noon during the total eclipse of 2017. We conducted the Mid‐Missouri Eclipse Meteorology Experiment to examine land‐atmosphere interactions during the eclipse. Here, research examining the eclipse responses in three contrasting ecosystems (forest, prairie, and soybeans) is described. There was variable cloudiness around first and fourth contacts (i.e., the start and end of partial solar obscuration) at the forest and prairie; however, solar irradiance (K) signals during the eclipse were relatively clean. Unfortunately, the eclipse forcing at the soybean field was contaminated by convective activity, which decreasedKbeginning about an hour before first contact and exposed the field to cold outflow ~30 min before second contact. Turbulence was suppressed during the eclipse at all sites; however, there was also an amplified signal at the soybean field during the passage of a gust front. The standard deviations of the horizontal and vertical wind velocities and friction velocities decreased by ~75% at the forest (aerodynamically rough), and ~60% at the prairie (aerodynamically smooth). The eddy fluxes of energy were highly coherent with the solar forcing with the latent and sensible heat fluxes approaching 0 W/m2and changing in direction, respectively. For the prairie site, we estimated a canopy‐scale time constant for the surface conductance light response of 10 min. Although the eclipse imparted large forcings on surface energy balances, the air temperature response was relatively muted (1.5–2.5 °C decrease) due to the absence of topographic effects and the relatively moist land and atmosphere.

     
    more » « less
  5. null (Ed.)